Belajar di Rumah : Sistem Persamaan Linier Dua Variabel (SPLDV)

Perhatikan video berikut ini


1.     Pengertian Sistem Persamaan Linier
Sistem persamaan linier (SPL) ialahgabungan dua atau lebih persamaan linier yang saling berkaitan satu dengan lainnya.
Didalam SPL itu ada yang namanya selesaian, selesaian ialahnilai pengganti peubah yang menyebabkan persamaan menjadi pernyataan yang bernilai benar. Dan proses dari selesaian itu biasanya disebut penyelesaian (selalu berkurung kurawal).

2.        Pengertian Sistem Persamaan Linier Dua Variabel
Persamaan linier dua variabel ialahpersamaan yang mengandung dua variabel dimana pangkat atau derajat tiap-tiap variabel sama dengan satu.
Bentuk umum persamaan linier dua variabel ialah:
ax + by = c
Dimana :  x dan y ialahvariabel
Sedangkan sistem persamaan dua variabel ialahdua persamaan linier dua variabel yang mempunyai hubungan diantara keduanya dan mempunyai satu penyelesaian.
Bentuk umum sistem persamaan dua variabel ialah:
ax + by = c
px + qy = r
Dimana : x dan y disebut variabel
 a, b, p dan q disebut koefisien
 c dan r disebut konstanta

3.        Metode-Metode Menyelesaikan Sistem Persamaan Linier Dua Variabel
Metode-metode untuk menyelesaikan Sistem Persamaan Linier Dua Variabel sebagai berikut :

a.      Metode Eliminasi
Dalam metode eliminasi, salah satu variabel dieliminasikan atau dihilangkan untuk mendapatkan nilai variabel yang lain dalam Sistem Persamaan Linier Dua Variabel tersebut. Untuk mengeliminasi suatu variabel, sambakalnilai kedua koefisien variabel yang bakaldieliminasi, kemudian kedua persamaan dijumlahkan atau dikurangkan.


b.      Metode Substitusi
Dalam metode substitusi, suatu variabel dinyatbakaldalam variabel yang lain  dari SPLDV tersebut. Selanjutnya, variabel ini digunbakaluntuk mengganti variabel lain yang sama dalam persamaan lainnya sehingga diperoleh persamaan satu variabel.
Contoh :
Tentukan himpunan penyelesaian SPLDV dari 3x + 4y = 11 dan x + 7y  = 15

Penyelesaian :
3x + 4y = 11 . . .  persamaan (1)
x + 7y = 15 . . .  persamaan (2)
Dari persamaan (2) didapat : x = 15 – 7y . . . persamaan (3)
Kemudian substitusikan pesamaan (3) ke persamaan (1) :
 3x + 4y = 11
 3(15 – 7y) + 4y = 11    45 – 21y + 4y = 11        - 21y + 4y = 11 – 45
                                                                                                       
                - 17y = - 34                         y = 2
Nilai  y = 2 kemudian substitusikan  y  ke persamaan (3)
 x = 15 – 7y
 x = 15 – 7(2)
 x = 15 – 14
 x = 1
Jadi, Himpunan Penyelesaiannya {(1, 2)}

c.      Metode Gabungan (Eliminasi dan Substitusi)
Dalam metode ini, nilai salah satu variabel terlebih dahulu dicari dengan metode eliminasi. Selanjutnya, nilai variabel ini disubstitusikan ke salah satu persamaan sehingga diperoleh nilai variabel sama.
Contoh :
Dengan metode gabungan tentukan himpunan penyelesaian dari sistem persamaan 2x – 5y = 2 dan x + 5y = 6 !


Penyelesaian : 
Langkah pertama yaitu dengan metode eliminasi, diperoleh :
2x – 5y = 2     ×1       2x – 5y = 2
x + 5y = 6       ×2       2x +10y = 12   -
                                        -15y = -10
                                           y = (-10)/(-15)
                                           y = 2/3
Kemudian, disubstitusikan nilai y ke persamaan x + 5y = 6 sehingga diperoleh.
x + 5y = 6
  x + 5 (2/3) = 6  x + 10/15 = 6               x = 6 – 10/15
               x = 22/3
Jadi, himpunan penyelesaiaanya ialah{(22/3,2/3)}

d.      Metode Grafik
Penyelesaian SPLDV dengan metode grafik ialahtitik potong kedua garis dari persamaan linier penyusunan. 
Contoh :
Tentukan himpunan penyelesaian dari sistem persamaan x + y = 5 dan x – y = 1, untuk x, y  R dengan menggunbakalmetode grafik.

Penyelesaian:
Tentukan terlebih dahulu titik potong dari gais-garis pada sistem persamaan dengan sumbu-sumbu koordinat seperti berikut ini:
Untuk gaaris  x + y = 5
X
0
5
Y
5
0
(x, y)
(0, 5)
(5, 0)
  •   Titik potong sumbu x, syarat y = 0

           x + y = 5
           x + 0 = 5
           x = 5
          Jadi titik potongnya (5,0)
  •   Titik potong sumbu y, syarat x = 0

             x + y = 5
             0 + y = 5
             y = 5
            Jadi titik potongnya (0,5)

 Untuk garis  x - y = 1
X
0
1
Y
-1
0
(x, y)
(0, -1)
(1, 0)

·         Titik potong sumbu x, syarat y = 0
x – y = 1
x – 0 = 1
x = 1
Jadi titik potongnya (1,0)

·         Titik potong sumbu y, syarat x = 0
x – y = 1
0 – y = 1
 y = -1
Jadi titik potongnya (0,-1)

Berdasarkan hasil diatas, kita bisa menggambarkan grafiknya seperti berikut ini:


Contoh Soal :
1.        Diketahui SPLDV berikut  y + 2x = 8 dan 2y – 7x = -6
Tentukan himpunan penyelesaian SPLDV dengan :
a.       Metode eliminasi
b.      Metode sebstitusi
c.       Metode gabungan (eliminasi dan substitusi)
d.      Metode grafik

Jawaban :
a.      Metode eliminasi
y + 2x = 8
2y – 7x = -6
*eliminasi y dari SPLDV
y + 2x = 8         x2       2y + 4x = 16
2y – 7x = -6      x1        2y – 7x = -6           -
                                           11x = 22
                                               x = 2
*eliminasi x dari SPLDV
y + 2x = 8      x7        7y + 14x = 56
2y – 7x = -     x2         4y – 14x = -12      +
                                           11y = 44
                                                y = 4
Jadi, himpunan penyelesaiannya {(2,4)}

b.      Metode substitusi
y + 2x = 8 . . . . . . . persamaan (1)
2y – 7x = -6 . . . . . . persamaan (2)
Ubah persamaan (1) menjadi y + 2x = 8  y = 8 – 2x . . . persamaan (3)
Substitusikan persamaan (3) ke dalam persamaan (2)
2y – 7x = -6  2(8 – 2x) – 7x = -6
  16 – 4x – 7x = -6
  16 – 11x = -6
  -11x = -6 – 16
  -11x = -22
       x = 2
Substitusikan x = 2 ke dalam persamaan (1)
y + 2x = 8
y + 2(2) = 8
  y + 4 = 8
       y = 8 – 4
       y = 4
Jadi, himpunan penyelesaiannya {(2,4)}

c.      Metode gabungan (eliminasi dan substitusi)
y + 2x = 8
2y -7x = -6

Langkah pertama yaitu dengan metode eliminasi, diperoleh :
y + 2x = 8     x2      2y + 4x = 16
2y – 7x = -6              x1      2y – 7x = -6     -
-11x = -22
x = 2
Kemudian substitusikan nilai x ke persamaan y + 2x = 8 sehingga diperoleh :
y + 2x = 8
y + 2(2) = 8
  y + 4 = 8
         y = 8 – 4
         y = 4

Jadi, himpunan penyelesaiannya {(2,4)}

d.      Metode grafik
y + 2x = 8

1.    Titik potong dengan sumbu x, syarat y = 0. 
0 + 2x = 8 
        x = 4 
Titik potong (4, 0)
2.    Titik potong dengan sumbu y, syarat x = 0.
y + 2(0) = 8
                 y = 8
Titik potong (0, 8)

Untuk garis y + 2x = 8
x
0
1
2
3
4
y
8
6
4
2
0

2y – 7x = -6
1.    Titik potong dengan sumbu x, syarat y = 0. 
2(0) – 7x = -6
             x = 6/7
Titik potong (6/7, 0)
2.    Titik potong dengan sumbu y, syarat x = 0.
       2y – 7(0) = -6
             y = -3
Titik potong (0, 6/7)
            Untuk garis 2x -7y = -6
x
0
1
2
3
4
y
-3
1/2
4
15/2
11


Berdasarkan hasil diatas, kita bisa menggambarkan grafiknya seperti berikut ini:

Koordinat titik potong kedua grafik tersebut ialah(2, 4). Dengan demikian, himpunan penyelesaian dari sistem persamaan y + 2x =8 dan 2y – 7x = -6 ialah{(2, 4)}.


Tidak ada komentar untuk "Belajar di Rumah : Sistem Persamaan Linier Dua Variabel (SPLDV)"